
This presentation is based upon a 3 day course I took from Jared Richard-
son. The examples and most of the tools presented are Java-centric, but there are
equivalent tools for other languages or you can use the same tools to do non-Java
automated testing as well.

1
Outline

Contents
1 Outline 1

2 Introduction 1

3 Continuous Integration 3

4 Writing Tests 5

5 Tools 9

2 Introduction
Why test automation?

• programmers are lazy

• Automated system finding bugs is better than people

• Need a reproducable test system

Being lazy isn’t a bad thing. Automate things that you can. It keeps people
from making mistakes. Making sure you have a reproduceable test system allows
you to automate tests.

Test automation setup

• Make sure you reproduce the running system

• May need virtual machines

• Do whatever is necessary to get your test data

Make sure you’re running as close to the real system as possible. This some-
times means building up a virtual machine that has all of the same tools as the
production system. Get real test data. This may mean you suck down the database
off the production server to get a reasonable test set. Although you may want to
sanitize it before you use it too much.

Ant

• Least common denominator

• Make this the gold standard

• Don’t make developers always wait too long for tests, otherwise they’ll skip

• use multiple targets

– one for quick unit tests

– one for longer integration tests

– short test for current task

The really nice thing about ant is that all you need is Java to run it. If you’re
working on a Java project this is great, if not, think about what tools make sense
here. The key here is that it’s not tied to the IDE. You can build everything and
run your tests outside of the IDE so the devlopers can pick the IDE that works
best for them.

2

3 Continuous Integration
Continuous Integration (CI)

• Hudson or CruiseControl

• Once you can run automated tests - run them in CI!

• Will send emails on status of builds

Continuous Integration is the idea that on each checkin to source control you
kick off a build and some set of tests and then the results of that are reported back
to the developers. The tests can be as long or as short as you’d like, however it’s
best to have a short set of tests so that the devlopers find out quickly if they’ve
broken something.

Any tests that you can automate, you can run from CI. Hudson and CruiseC-
ontrol are the two popular tools these days. Both are written in Java and have
nice hooks for Java, but are definitely not limited to Java. I have successfully used
Hudson on C and C++ projects. Personally I like the extra plugins in Hudson and
the ease of setup.

Metrics & CI

• Don’t display too much

• Find out what numbers are important

• Play to the developers egos

• Don’t point at problems bugs, point at buggy code

If you display too much information, people will ignore it. Play to the de-
vleopers egos. Start by sending the emails to just the people that broke the build.
If that isn’t working, try sending the messages to all developers on the team. At
one point Jared ended up sending the emails to the whole company - in a small
company with CEO approval. Since it’s an automated system, it’s not a personal
attack. It’s just a system making an objective statement about the code.

3

Some Metrics

• McCabe Cylomatic

• http://en.wikipedia.org/wiki/Cyclomatic_complexity

• Code coverage

Pick some metrics that are useful. McCabe Cylomatic is a common one.
Scores between 0 and 28 are ok. Above that the number of bugs increases lin-
early with the score. You can find out more details about it on Wikipedia.

Code coverage is another good metric, although remember that it should be
used as a guide, not a goal. 100% test coverage as a goal cuases people to write
useless tests that test things that don’t need testing.

static code analysis

• run against development code

• run against test code too

• Start with FindBugs

• Move to PMD once FindBugs is clean enough

• Open Tasks

• Copy Paste Detector

Static code analysis can be useful to find standard bugs and it doesn’t require
you to write more test code to find them. Remember lazy is good.

Run your static code analysis against the test code as well. I haven’t done this
in the past, but Jared pointed out that bugs in tests result in bugs in production.

FindBugs and PMD are two good tools for Java. You can even run them as a
Java WebStart app, so you don’t need to install it or hook it into your build system
just to test. FindBugs will find lots of good things. Once you’ve cleaned up the
ones that you care about (and it may not be all), then try PMD. Don’t start with
PMD otherwise you’ll be overwhelmed with everything that it finds.

A metric that that is sometimes used is the number of TODO and FIXME notes
in a codebase. This can be useful to see if things are getting finished, in addition
to the bug tracking information.

4

Example Metric - Risk

• risk = (McCabe’s * call count) * coverage percentage

• Example risk = (70 * 74) * 50

• List top 10 classes by risk

• Watch and see the results

An example metric that Jared ended up using was risk. It’s computed based
on McCabe’s cylomatic number and code coverage and the number of times that
a method is called. As call count decreases or coverage increases, risk goes down.
List the classes with the top 10 risk values on the CI server page and see what
happens. People will start finding things that need to be fixed in that code to get
“their” class of the risk list.

The example is a McCabe value of 70, 74 calls to the method and 50% code
coverage of the method.

4 Writing Tests
Writing Tests

• Don’t open the Kimono

• Only test the public API

Don’t open the Kimono. You don’t test the private parts of the code. Stick
to testing the public API and it’s behaviors. This way as the developers decide
to change the implementations, as long as the behavior is still the same, the tests
pass.

Characteristics of a good test
Right-BICEP

• Are the Results Right

• Boundary Conditions

• Check Inverse Relationships

5

• Cross-check using Other Means (Test the Oracle)

• Force Error Conditions (Attacks)

• Performance Characteristics

Did you test it right, did you test the boundary conditions? Did you test rela-
tionships going both ways. Make sure your computing the answer in a different
way, otherwise you’re likely to make the same mistakes twice. For instance test-
ing that adding 1 to max int results in 1+max int is bad. What you should test for
is that the result is greater than max int.

Test error conditions and how the system behaves, this can be big for security.
Test the performance constraints of the system.

Characteristics of a good test (cont.)

• abstract away the test tools

• keep test methods short

• longer than a page and it needs to be shortened

Abstract away the test frame work, as it allows one to change it out later. Keep
test methods short, just like production code. You’re code shouldn’t be longer
than a page as then you’ll forget what was above and scrolled off the screen.

Mocks & stubs

• Sometimes the terms are interchangble

• stubs are usually written by people

• mocks are automatically created, just count method calls

• If you use Continuous Integration you shouldn’t need mocks

Some people use mocks to isolate code that is being tested so that you only
break 1 test and you can easily find what is wrong. However, if you’re checking
in regularly then CI will tell you where the error is. Use stubs where you can’t
test reliably, such as testing a thermometer.

6

Integration vs. Unit tests

• Unit Tests

– good for starting from new code

• Integration Tests

– good for legacy code

– best use of time (for legacy code)

– will end up with low code coverage percentage

– but it’s the right percentage

It depends on what kind of code you’re writing. You can write unit tests for
legacy code, but it’s usually slow and doesn’t have much payoff. Now adding new
features to legacy code can be unit tested and should be, if possible.

Test Driven Design (TDD)

• Write one test then write code to make the test pass

• Causes you to really think

• Use for new code

• will end up with more stable code

• will end up with high code coverage (not goal though)

• Pair programming

This coding methodology causes you to really think about the requirements for
the code that you’re writing. Doing pair programming here can help to brainstorm
ideas. Extra eyeballs on the code are always good.

7

Defect Driven Testing (DDT)

• Find a bug

• Add a test

• Jazz it up

– add tests with variations

– never write 1 test for a bug

This testing is great for legacy code, code that doesn’t have tests written for
it to start with. For each bug, write a test case that exposes the bug. Then write
a couple of variations on that test case. Don’t just write one test, write multiple
tests to help catch bugs that haven’t been discovered in the same area.

Testable code

• Good testable code does 1 thing and then returns

Methods that do lots of things are really hard to test. You have multiple behav-
iors going on inside the method and it’s hard to write tests for complicated things
like that. Keep it simple.

Testing Multi-tier architecture

• Mock everything up to start (tracer bullets)

• Test everything with canned data

• Allows you to find out if the architecture works early

Tracer bullets are used to see what you’re shooting at. When building a multi-
tier architecture, mock up the architecture. Put some canned data through it and
make sure the architecture makes sense. Then start implementing pieces of the
system and continue to run the same tests with the canned data and start adding
more real data as the system matures.

8

5 Tools
Picking Tools

• Have 1 person pick the tools and go with their choice

– otherwise end up with too many options

– Have them write the test templates

– Make everyone use it

When picking tools, have one person pick the tools and make everyone use
them. Make the person that picks the tools write up test templates for everyone
to use. That avoids writers block. You’ve always got a test to start with and to
modify. You never hear of Editors Block.

Database Tools

• Liquibase

• ruby database migrations

Some tools for keeping track of database schema changes are Liquibase and
ruby database migrations. If you’re building this kind of system, look into them.
Liquibase is XML based, ruby is code based. Depends on what you like to use.

Web Testing

• Selenium

– Firefox plugin for IDE to create tests

– Can call multiple browsers

• YSlow

– static web page analysis tool

– Gives performance tips

9

Selenium is a really useful tool for writing web tests. To avoid writers block,
start by recording a test using the selenium IDE (firefox plugin). Then export the
test in your language of choice and start editing. While the recording can only be
done in firefox, the playback can be done in any browser. Safari, IE and firefox
have full support with other browsers having limited support.

For testing performance of web pages, use YSlow. It’s an addon for firefox that
builds on Firebug (which is really helpful for web development as well). YSlow
will analyze your web page and provide suggestions on how to speed up the page
load time.

UI testing

• Test at the controller and model layer

• Use something like selenium or AWT Robot

When doing UI testing, try and test at the controller and model layer and you
avoid the issues of having to figure out how to push buttons. However when you
need to, there are tools like selenium and the AWT robot class. UISpec is one that
I’ve looked into, but wasn’t mentioned in class. There are other ones out there as
well.

Resources

• Pragmatic Programmer

• Pragmatic Unit Testing

• Buildix - can download everything for CI in a vm

Some resources that can be useful. I’m told the “Pragmatic” books are great
resources, especially Pragmatic Programmer and Pragmatic Unit Testing.

For getting started with CI you can goto Buildix.thoughtworks.com and get a
VM that contains everything you need for CI as well as source control and bug
tracking.

10

